Preservation of layered paleodeposits in high-latitude pedestal craters on Mars
نویسندگان
چکیده
0019-1035/$ see front matter 2011 Elsevier Inc. A doi:10.1016/j.icarus.2011.03.029 ⇑ Corresponding author. Fax: +1 401 863 3978. E-mail address: [email protected] (S.J. Kadi An outstanding question in Mars’ climate history is whether or not pedestal craters represent the armored remnants of ice-rich paleodeposits. We address this question using new high-resolution images; in a survey of several hundred high-latitude pedestal craters, we have identified 12 examples in which visible and/or topographically expressed layers are exposed on the marginal scarp of the pedestal. One example, located on the south polar layered deposits, preserves ice-rich layers that have otherwise been completely removed from the polar cap. These observations provide empirical evidence that the pedestal crater formation mechanism is capable of armoring and preserving ice-rich layered paleodeposits. Although layered exposures have not yet been observed in mid-latitude pedestal craters, high-latitude instances of discontinuous, partially covered layers suggest that layers can be readily concealed, likely through mantling and/or mass wasting processes along the marginal scarp. This interpretation is supported by the observation that high-latitude pedestals with exposed layers along their margins are, on average, taller than mid-latitude examples, and have larger, steeper marginal scarps, which may help to maintain layer exposures. These observations favor the interpretation that midto high-latitude pedestal craters represent the armored remnants of iceand dust-rich paleodeposits, which occurred transiently due to changes in the climate regime. Preservation of fine-scale layering of ice and dust at these latitudes implies that the climate change did not involve regional melting conditions. 2011 Elsevier Inc. All rights reserved.
منابع مشابه
Pedestal crater heights on Mars: A proxy for the thicknesses of past, ice-rich, Amazonian deposits
Mid-latitude pedestal craters on Mars offer crucial insights into the timing and extent of widespread icerich deposits during the Amazonian period. Our previous comprehensive analysis of pedestal craters strongly supports a climate-related formation mechanism, whereby pedestals result from impacts into ice-rich material at mid latitudes during periods of higher obliquity. The ice from this targ...
متن کاملLatitude dependence of Martian pedestal craters: Evidence for a sublimation-driven formation mechanism
[1] We report on the results of a survey to document and characterize pedestal craters on Mars equatorward of 60 N and 65 S latitude. The identification of 2696 pedestal craters reveals a strong latitude dependence, with the vast majority found poleward of 33 N and 40 S. This latitudinal extent is correlated with many climate indicators consistent with the presence of an ice-rich substrate and ...
متن کاملAmazonian mid- to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration
Concentric crater fill (CCF) occurs in the interior of impact craters in midto high latitudes on Mars and is interpreted to have formed by glacial ice flow and debris covering. We use the characteristics and orientation of deposits comprising CCF, the thickness of pedestal deposits in midto high-latitude pedestal craters (Pd), the volumes of the current polar caps, and information about regiona...
متن کاملMartian pedestal craters: Marginal sublimation pits implicate a climate-related formation mechanism
[1] Pedestal craters on Mars are defined by an outwardfacing scarp forming a plateau perched tens of meters above the surrounding terrain. Their origin has been attributed to impact armoring of the surface and subsequent removal of inter-crater terrain by either eolian deflation or sublimation of an ice-rich substrate. We identified 2696 pedestal craters between 60 N and 60 S latitude; 98% are ...
متن کاملThe ages of pedestal craters on Mars: Evidence for a late-Amazonian extended period of episodic emplacement of decameters-thick mid-latitude ice deposits
There is significant geomorphologic evidence for the past presence of longitudinally widespread, latitudinally zoned deposits composed of ice-rich material at the northern and southern mid latitudes on Mars (lobate debris aprons, lineated valley fill, concentric crater fill, pedestal craters, etc.). Among these features, pedestal craters (Pd) are impact craters interpreted to have produced a pr...
متن کامل